• A
  • A
  • A
  • АБВ
  • АБВ
  • АБВ
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта

Искусственный интеллект распознает изображения хуже человека

Искусственный интеллект распознает изображения хуже человека

© iStock

У компьютерного зрения нет тех физиологических особенностей, которые есть у человека, поэтому оно хуже распознает изображения. К такому выводу пришли ученые из ВШЭ и Московского политехнического университета. Результаты исследования опубликованы в сборнике Proceedings of Seventh International Congress on Information and Communication Technology.

Чтобы понять, как машинное восприятие изображений отличается от человеческого, российские ученые загрузили изображения классических визуальных иллюзий в онлайн-сервис распознавания образов IBM Watson Visual Recognition. Большая часть из них представляла собой геометрические силуэты, частично скрытые геометрическими формами цвета заднего плана. Система пыталась определить, что представляет собой поступившее изображение, и указывала степень уверенности в своем ответе.

Оказалось, что искусственный интеллект не способен распознать ни одну воображаемую фигуру. Исключение составил раскрашенный воображаемый треугольник. В силу высокого контраста с фоном он был распознан правильно.

Владимир Винников

«Объекты, похожие на те, что мы использовали в ходе эксперимента, встречаются в реальной жизни, — комментирует автор исследования Владимир Винников, аналитик Научно-учебной лаборатории методов анализа больших данных факультета компьютерных наук ВШЭ. —  Например, прицеп трейлера или радиобашня, которые по ночам обозначаются только габаритными огнями, автопилот автомобиля или самолета воспринимает таким же образом, как мы — воображаемые геометрические фигуры».

Человеческий глаз постоянно непроизвольно движется, а светочувствительная поверхность его сетчатки имеет форму полусферы. Чтобы человек увидел иллюзию, изображению достаточно быть векторным — состоять из опорных точек и соединяющих их кривых. Человеческое воображение достроит картинку благодаря физиологической особенности зрения — постоянному движению глаз.

В оптико-электронных системах все устроено иначе. Их светочувствительная матрица имеет плоскую, как правило прямоугольную, форму, а сама система линз далеко не так свободна в движении, как человеческий глаз. Поэтому искусственный интеллект не может достроить воображаемые линии, которые связывают фрагменты геометрической иллюзии. Машинное зрение видит только то, что реально изображено, тогда как человек достраивает в воображении полное изображение по его очертаниям.

Нейросетевые системы распознавания образов сегодня активно распространяются в коммерческом секторе. Однако вопрос, насколько точно машина распознает изображение, до сих остается открытым. От точности его распознавания могут зависеть человеческие жизни. Например, если автопилот автомобиля или самолета не распознает объект с низкой контрастностью относительно фона и не успеет вовремя уклониться от препятствия, может произойти катастрофа.

Ученые полагают, что недостатки машинного распознавания образов можно исправить.

Например, дополнить распознавание растровых изображений, представляющих собой сетку пикселей, имитацией физиологических особенностей движения глаз, которые позволяют глазу видеть двумерные и трехмерные сцены. Альтернативный способ — добавить векторное описание изображений. Оно позволит запрограммировать машину на обход изображения по траекториям, заданным векторами.

«Воображаемые фигуры обязательно стоит использовать в качестве тестов в системах, которые зависят от распознавания фото- и видеопотоков. Например, в автопилотах машин или беспилотных летательных аппаратов. Это поможет избежать рисков, связанных с использованием систем машинного интеллекта в промышленности и транспортных системах», — полагает Владимир Винников.

Вам также может быть интересно:

НИУ ВШЭ стал абсолютным лидером рейтинга вузов по подготовке кадров для ИИ

Альянс в сфере искусственного интеллекта опубликовал обновленный рейтинг вузов по качеству подготовки специалистов в области ИИ. В него вошли 203 российских университета из 68 регионов. Высшая школа экономики первой получила наивысшую категорию А++.

ВШЭ и МТС будут вместе бороться с дипфейками и научат искусственный интеллект создавать новое видео под запросы пользователей

НИУ ВШЭ и компания МТС Web Services (MWS) объявили о запуске серии совместных исследовательских работ в области технологий искусственного интеллекта, направленных на развитие инновационных решений в сфере кибербезопасности, мультимодальной генерации контента и анализа больших данных. Основным исполнителем проекта является Московский институт электроники и математики им. А.Н. Тихонова НИУ ВШЭ при общей координации Центра искусственного интеллекта ВШЭ.

11 вузов России стали участниками проекта ВШЭ и «Яндекса» по применению ИИ при подготовке дипломных работ

Эксперты «Яндекс Образования» и факультета компьютерных наук НИУ ВШЭ научили студентов и научных руководителей использовать нейросеть YandexGPT в трудоемких задачах — для анализа источников, структурирования информации, визуализации данных и работы с текстом в процессе подготовки дипломов.

НИУ ВШЭ объединил ученых на международной школе по ИИ в Шанхае

В начале июля в Шанхае проходил Международный летний институт по исследованиям искусственного интеллекта в образовании, организованный Инобром НИУ ВШЭ совместно с Восточно-китайским педагогическим университетом. Более 50 молодых исследователей и ключевых спикеров из девяти стран — от России и Китая до Канады и Сингапура — собрались, чтобы обменяться последними результатами своей работы и построить новые международные партнерства.

Исследователи ВШЭ научили нейросети различать происхождение из генетически близких популяций

В Институте искусственного интеллекта и цифровых наук ФКН НИУ ВШЭ предложили новый подход, основанный на современных методах машинного обучения, для определения генетического происхождения человека. Графовые нейросети позволяют с высокой точностью различать даже очень близкие популяции.

«Развитие экономики без фактора ИИ уже невозможно»

В Шанхае стартовал международный летний институт по исследованиям искусственного интеллекта в образовании, организованный Институтом образования НИУ ВШЭ совместно с Восточно-китайским педагогическим университетом (ВКПУ). На него приехало свыше 50 участников и ключевых спикеров более чем из десяти стран Азии, Европы, Северной и Южной Америки. Они обсудили использование ИИ-технологий в образовании и других сферах.

Эксперты ВШЭ и РГАИС выступили за патентную защиту ИИ-решений

В НИУ ВШЭ состоялся круглый стол «Искусственный интеллект и ИТ-решения: тенденции охраны и возможности патентования». Лейтмотивом мероприятия стало признание необходимости доработки действующего отечественного законодательства в области интеллектуальной собственности на основе риск-ориентированного подхода.

Рекомендательные системы: новые алгоритмы и современная практика

Институт ИИ и цифровых наук ФКН НИУ ВШЭ провел конференцию, посвященную передовым технологиям рекомендательных систем. Мероприятие прошло в атмосфере активного обмена опытом между ведущими специалистами отрасли и позволило участникам ознакомиться с последними достижениями и практическими решениями в области разработки рекомендательных моделей.

ИИ в университетах: раскрытие потенциала и преодоление тревог

Образовательные ИИ-инструменты заметно эволюционировали, однако до сих пор многие представители университетов и рядовые пользователи испытывают опасения на их счет. Ученые Института образования НИУ ВШЭ изучили различные аспекты интеграции искусственного интеллекта в образовательный процесс и объединили усилия с ИТ-компанией «Кеды профессора», чтобы помогать российским вузам встраивать ИИ-решения в свою работу.

«ИИ и машинное обучение — мощные технологии, но не везде научились их применять»

Рост доходов мировой индустрии образования может составить до 4% в ближайшие годы благодаря внедрению технологий искусственного интеллекта. Кроме того, ИИ сокращает время работы преподавателей в 4–5 раз. Эксперты Вышки рассказали, как преподаватели и административный персонал вузов осваивают нейросети, боты и другие инструменты и почему не стоит бояться, что их заменит ИИ.