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Abstract In this paper, we consider projection estimates for Lévy densities in high-
frequency setup. We give a unified treatment for different sets of basis functions and
focus on the asymptotic properties of the maximal deviation distribution for these
estimates. Our results are based on the idea to reformulate the problems in terms
of Gaussian processes of some special type and to further analyze these Gaussian
processes. In particular, we construct a sequence of excursion sets, which guarantees
the convergence of the deviation distribution to the Gumbel distribution. We show
that the exact rates of convergence presented in previous articles on this topic are
logarithmic and construct the sequence of accompanying laws, which approximate
the deviation distribution with polynomial rate.
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1 Introduction

Consider a one-dimensional Lévy process Xt with Lévy triplet (μ, σ, ν). Assume
that the measure ν has a density s(·), known as Lévy density, that is,

ν(B) =
∫

B

s(u)du, ∀B ∈ B(R\{0}),

Assuming that some discrete equidistant observations X0, X�, ..., Xn� of the pro-
cess Xt are available, it is natural to ask how one can statistically infer on the Lévy
density s(·), or more generally speaking, on the Lévy measure ν. The answer to this
question highly depends on the type of the available data. The first situation, known
as high-frequency setup, is based on the assumption that the time distance between
the observations � = �n depends on n and tends to 0 as n → ∞. Moreover, very
often (and in this paper) it is also assumed that the time horizon T = n�n → ∞ as
n → ∞. Non-parametric inference for this case has been considered by Comte and
Genon-Catalot (2009, 2010a, 2011), Figueroa-López (2011). The second situation,
the so-called low-frequency setup, in which � is fixed, has been extensively stud-
ied by Nickl and Reiss (2012), Gugushvili (2012), Belomestny (2011), Comte and
Genon-Catalot (2010a, 2010b), Chen, Delaigle and Hall (2010), Neumann and Reiss
(2009), van Es, Gugushvili and Spreij (2007). The essential idea in almost all papers
mentioned above is to express the Lévy measure in terms of the characteristic func-
tion of Xt and then replace this characteristic function by its natural nonparametric
estimator.

It is a worth mentioning that in most papers on this topic, the quality of proposed
estimator for s(·) is measured in terms of quadratic risk. More precisely, for a fixed
estimate ŝ◦

n(x), a collection of Lévy processes T and a window D = [a, b] ⊂ R\{0},
it is common to prove two statements, which present upper and lower bounds for the
difference between ŝ◦

n(x) and the true density function s(x). These two statements
are usually formulated as follows: for n large enough,

sup
T

E
(
ŝ◦
n(x) − s(x)

)2 ≤ f (n), ∀x ∈ D,

inf{ŝn(x)} supT
E
(
ŝn(x) − s(x)

)2 ≥ g(n), ∀x ∈ D,

where
{
ŝn(x)

}
is the set of all estimates of the Lévy density s(x), and f (n), g(n) are

two functions tending to 0 as n → ∞. If f (n) 
 g(n), it is usually claimed that the
estimate ŝ◦

n(x) is optimal.
Our research has a slightly different focus. We consider the projection estimator

ŝn(x) defined below by Eq. 9, and analyze asymptotic properties of the distribution of
supx∈D

(∣∣ŝn(x) − s(x)
∣∣ /√s(x)

)
, under the assumption infx∈D s(x) > 0. To the best

of our knowledge, the unique research in this direction is provided by Figueroa-López
(2011), who considered the maximal deviation distribution for projection estimates
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to the space spanned by Legendre polynomials of orders 0 and 1. We emphasize the
main differences between our paper and the paper by Figueroa-López (2011) later in
Section 6. For the moment, let us only mention that our setup covers more general
classes of estimates - in particular, we provide the proof for Legendre polynomials of
any order, as well as for trigonometric basis and wavelets.

The motivation of this research comes from the paper by Konakov and
Piterbarg (1984), where the asymptotics of the maximal deviation distribution is
proven for the kernel estimates of a density and regression functions. Konakov and
Piterbarg (1984) showed that the convergence to asymptotic distribution given in
Bickel and Rosenblatt (1973) is very slow (of logarithmic order) and this rate cannot
be improved. Moreover, in that paper, it is obtained a sequence of distribution laws,
which approximate the maximal deviation distribution with power rate of conver-
gence. Nevertheless, the density and regression problems significantly differ from the
estimation of Lévy density, and therefore the techniques of the research by Konakov
and Piterbarg (1984) are not applicable to our setup.

The contribution of this paper is twofold. First, we derive the asymptotic behaviour
of the maximal deviation distribution for a broad class of projection estimates of
the Lévy density. This result can be further applied for constructing asymptotic con-
fidence bands and statistical tests. Second, we show that the rate of convergence
to the double exponent distribution is of logarithmic order, and this rate cannot be
improved. Finally, we provide the sequence of accompanying laws with power rate
of convergence.

The paper is organized as follows. In the next section, we explain our setup and
assumptions on the set of basis functions. Section 3 contains a collection of our
results. Later on, in Sections 4.1–4.3 we prove and discuss these results separately
for different choices of basis functions - trigonometric functions, Legendre polyno-
mials and wavelets. Next, we give a general scheme of construction the asymptotic
confidence bands for s(x) in Section 5. Some further discussions can be found in
Section 6. Additional proofs are collected in the Appendix.

2 Set-up

2.1 Collections of basis functions

In this paper, we follow the set-up from Figueroa-López (2011), and study the esti-
mation of the Lévy density s(x) over a window D, based on discrete observations of
the process on an interval [0, T ]. We consider a family of finite linear combinations
of functions from orthonormal collection {ϕr(x) : D → R, r = 1..d} with respect to
the inner product < f, g >= ∫

D
f (x)g(x)dx:

L =
{

d∑
r=1

βrϕr(x), β = (β1, ..., βd) ∈ R
d

}
, (1)
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and later project the Lévy density to the space L in L2(D) - metric. In this article,
we assume that for any m ∈ N there exists a set of normalized bounded functions{
ψm

j : D → R

}J

j=0
supported on [a, a + δ), where δ = (b − a)/m, such that

{
ϕr(x), r = 1..d

}
=
{
ψm

j (x − δ(p − 1)) · I {x ∈ Ip

}
, j = 0..J, p = 1..m

}
,

where Ip := [a + δ(p − 1), a + δp).

In what follows, it is important how the basis functions ψm
j (x) depend on m, or

in other words, how these functions depend on δ = (b − a)/m. Below we give
an intuition about the dependence. Note that in most examples, basis on [a, a +
δ) is constructed from a basis {ψ̃j (x)}j=0..J on some “standard” interval [ã, b̃] by
changing the variables:

ψm
j (x) =

√
b̃ − ã

δ
· ψ̃j

(
(b̃ − ã)(x − a)

δ
+ ã

)
, (2)

and thereforeψm
j (x) = O(

√
m) asm → ∞. Some typical examples are listed below.

(i) Trigonometric basis on [a, a + δ)

{
ψm

j (x), j = 0..J
}

=
{
χ0(x) = 1√

δ
, χj (x) =

√
2

δ
cos (2jπ(x − a)/δ) ,

χ̃j (x) =
√
2

δ
sin (2jπ(x − a)/δ) ,

j = 1..(J/2)
}

(3)

with even J . In this case, it is natural to define the “standard” interval as
[ã, b̃] = [0, 2π ], and basis on this interval as

{
ψ̃j (x)

} =
{

1√
2π

,
1√
π
cos(jx),

1√
π
sin(jx)

}
.

(ii) Legendre polynomials, that is

ψm
j (x) =

√
2j + 1

δ
Pj

(
((x − a − δ) + (x − a)) /δ

)
, (4)

where

Pj (x) = 1

j !2j

[(
x2 − 1

)j
](j)

, |x| ≤ 1, j = 0..J.

The set of orthonormal polynomials on [ã, b̃] = [−1, 1]{
ψ̃j (x)

}
=
{√

(2j + 1)/2 · Pj (x), j = 0..J
}
,

plays the role of standard basis.
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(iii) Wavelets, for instance Haar wavelets

ψm
j (x) =

{
1√
δ
,

1√
δ

(
I{x ∈ [a, a + δ/2)

−I{x ∈ [a + δ/2, a + δ]}}
)}

, (5)

where δ is usually taken as 2−l for some l ∈ N. The role of standard interval is
usually given to the interval [ã, b̃] = [0, 1] supplied with two functions

{
ψ̃j (x)

}
=
{
1, I{x ∈ [0, 1/2)} − I{x ∈ [1/2, 1]}

}
.

To sum up, basis functions typically depend on δ as it is given by Eq. 2, where the
functions ψ̃j are bounded and supported on some compact [ã, b̃]. For theoretical
studies, we assume that the function

√
δψm

j (x) and its total variation are bounded by
some absolute constants C1 and C2, i.e., for all j = 0..J, m ∈ N,

√
δ · sup

x∈I1

|ψm
j (x)| ≤ C1,

√
δ · V{I1}

(
ψm

j

)
≤ C2, (6)

where by V{I1}(ψm
j ) we denote the total variation of the function ψm

j ,

V{I1}(ψm
j ) := sup

‖P ‖→0

n∑
i=1

∣∣∣ψm
j (xi) − ψm

j (xi−1)

∣∣∣ ,

P ranges over the partitions a = x0 < x1 < ... < xn = a + δ, and ‖P ‖ =
maxi |xi − xi−1|.

2.2 Projection estimates

Consider the L2-scalar product and L2-norm in the space of functions
{g : D → R}, and introduce the function s̃(x) as the orthogonal projection of s(x)

on L with respect to this norm:

s̃(x) :=
d∑

r=1

βrϕr(x), (7)

where

βr = β(ϕr) =
∫

D

ϕr(x)s(x)dx =
∫

D

ϕr(x)s̃(x)dx.

Returning to the statistical problem, that is, to the problem of statistical estimation of
s(x) by the equidistant observations X0, X�, ..., Xn�, we realize that the main dif-
ficulty consists in the estimation of β(ϕr) for different basis functions ϕr . As it was
explained earlier, there exists a crucial difference in the assumptions on the design. It
turns out, that in case of the low-frequency setup, this question is not well-understood
in the literature. As for the high-frequency setup, estimation of β(ϕr) has been
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extensively studied in Figueroa-López (2004) and Wörner (2003), where it is shown
that the coefficients βr can be estimated by

β̂(ϕr ) = 1

nΔ

n∑
k=1

ϕr

(
X

(k)
Δ

)
, where X

(k)
Δ = XkΔ − X(k−1)Δ. (8)

Next, we can substitute the estimator β̂(ϕr ) in Eq. 7, and get that

ŝn(x) :=
d∑

r=1

β̂(ϕr)ϕr(x) = 1

nΔ

d∑
r=1

[
n∑

k=1

ϕr

(
X

(k)
Δ

)]
ϕr(x) (9)

is a reasonable estimator for the Lévy density s(x).

3 Main results

In this section, we present our results related to the projection estimator ŝn(x) of the
Lévy density s(x). First note that from Corollary 8.9 of Sato (1999), it follows that
β̂(ϕr) defined by Eq. 8 is a consistent estimator of β(ϕr). For theoretical study, we
introduce additional assumptions on the rate of this convergence. As in (Figueroa-
López 2011), we assume that the following small-time asymptotic property holds:
there exist positive constants q and �0 such that

sup
x∈D

∣∣∣∣ 1ΔP {XΔ ≥ x} − ν ([x,+∞))

∣∣∣∣ < qΔ, ∀ 0 < Δ < Δ0. (10)

For instance, this property is fulfilled when s(·) is Lipschitz in an open set containing
D and uniformly bounded on |x| > ε for any positive ε (see Proposition 2.1 from
Figueroa-López (2011)).

In this paper, we consider the case of high-frequency data with T → ∞ as
n → ∞. Moreover, the parameter m, which indicates the number of intervals in our
construction of the set of basis functions, also tends to infinity with n. With no doubt,
the rates of growth m, n, T should be somehow coordinated. This can be done in dif-
ferent ways. Mainly for technical reasons, we assume that T = nκ with some κ > 0.
Since in the high-frequency setup � = T/n → 0, we get that κ < 1.

In this research, we focus on the analysis of maximal deviation in terms of

Dn := sup
x∈D

(∣∣ŝn(x) − s(x)
∣∣

√
s(x)

)
. (11)

Note that throughout the paper we assume that infx∈D s(x) > 0.
We start the analysis of the distribution of Dn with a technical result related to the

random variable

Zn := sup
x∈D

(∣∣ŝn(x) − Eŝn(x)
∣∣

√
s(x)

)
, (12)
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which is “a random part” ofDn. This result allows to reformulate the problem of find-
ing the asymptotic behaviour of the distribution function of Zn in terms of Gaussian
process Υ (x) defined by

Υ (x) = Υ J,m(x) :=
J∑

j=0

Zjψ
m
j (x), x ∈ I1, (13)

with i.i.d. standard normal r.v.’s Zj , j = 0, ..., J .

Proposition 1 Let Eqs. 6 and 10 hold, and assume that s(·) is a Lipschitz function in
an open set containing D. Denote the r.v.

ζ = ζ J,m := sup
x∈[a,a+δ)

∣∣∣Υ J,m(x)

∣∣∣ .
Then there exist positive constants c1, c2, λ1, λ2, such that for any u ∈ R it holds

P

{√T

m
Zn ≤ u

}
≤
[
P

{
ζ ≤ √

m
(
u + c1n

−λ1
)}]m + c2n

−λ2, (14)

P

{√T

m
Zn ≤ u

}
≥
[
P

{
ζ ≤ √

m
(
u − c1n

−λ1
)}]m − c2n

−λ2, (15)

provided that T = nκ with κ ∈ (0, 1) and m = nγ with γ ∈ (θ/2, θ), where

θ := min {κ, (1 − κ) − 2λ2} > 0. (16)

Remark 1 Clearly the constant λ2 may be chosen less than (1 − κ)/2. Moreover, it
follows from the proof that Eqs. 14–15 hold with any λ1 < (θ − γ )/2.

Proof The proof is given in Appendix A.We divide the proof into 11 steps to simplify
the reading.

In the next sections, we closely consider the Gaussian processes Υ J,m(x), defined
by Eq. 13, where {ψm

j (x)} are the sets of basis functions listed in Section 2. The next
theorem demonstrates the asymptotic behavior of the distribution function of the r.v.

ζ̃ = ζ̃ J,m := sup
x∈[a,a+δ)

Υ J,m(x).

Later on, we will derive from this theorem the asymptotic behavior of ζ J,m.

Theorem 1 Let u grow as δ → 0 so that
√

δu → ∞. Then in all cases (i) - (iii)
described in Section 2.1, it holds

P

{
ζ̃ J,m ≥ u

}
= g1(J )(√

δu
)k

e−g2(J )·δu2 (1 + τ(
√

δu)
)

, (17)

where τ(x) → 0 as x → ∞, and
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(i) in case of trigonometric basis (3),

k = 0, g1(J ) =
⎛
⎝2
∑J/2

j=1 j2

J + 1

⎞
⎠

1/2

, g2(J ) = 1

2(J + 1)
;

(ii) in case of Legendre polynomials (4),

k = 1, g1(J ) = √
2(J + 1)/

√
π, g2(J ) = 2−1 (J + 1)−2 ;

(iii) in case of wavelets (5),

k = 1, g1(J ) = 2/
√

π, g2(J ) = 1/4.

Furthermore, in case (i),

τ(x) = √
J + 1

(√
2πx · g1(J )

)−1 (
1 + O(x−2)

)
, x → ∞,

and in case (iii), τ(x) = −2x−2 (1 + o(1)) , x → ∞.

Layout of the proof As it was mentioned before, there is no unified approach to
find the asymptotics of the distribution of Gaussian process. Since the methodology
crucially depends on the properties of covariance function, we separately prove this
result for different basis functions, see Sections 4.1–4.3. In the case of trigonomet-
ric basis (Section 4.1), we efficiently use the stationarity of the considered Gaussian
process, and apply some techniques from Piterbarg (1996). In the case of Legen-
dre polynomials (Section 4.2), we take into account that the variance of the process
attains its maximum only in finite number of points, and apply the results from
Piterbarg (1996) based on the double sum method. Finally, in case of wavelets
(Section 4.3), we directly calculate the asymptotic behaviour of P{ζ ≥ u}.

In the sequel, we will use (17) in the following form:

P

{
ζ̃ J,m ≥ u

}
= h1 mk/2

uk
exp
{
−h2 u2/m

} (
1 + τ̆

(
u/

√
m
))

, (18)

where h1 = h1(J ) := g1(J ) · (b − a)−k/2, h2 = h2(J ) := g2(J ) · (b − a), and
τ̆ (x) = τ

(√
b − a · x

)
, and u grows with m so that u/

√
m → ∞.

Using (18), we derive similar result for the supremum of the absolute value of the
Gaussian process, which is formulated below.

Corollary 1 Let u grow with m so that u/
√

m → ∞. Then it holds

P

{
ζ J,m ≥ u

}
= 2

h1 mk/2

uk
exp
{
−h2 u2/m

} (
1 + τ̆

(
u/

√
m
))

. (19)

Proof The proof is given in Konakov and Panov (2016), Appendix A.2.

Proposition 1 and Theorem 1 yield the following theorem, which shows the
asymptotic distribution of the maximal deviation Zn.
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Theorem 2 Let the assumptions of Proposition 1 be fulfilled. Denote for any y ∈ R,

um = um(y) := y

am

+
(

bm − cm

bm

)
, (20)

where

am := 2h2bm, bm :=
√

1

h2
log (h1m), cm := k

2h2
log bm. (21)

Then in all cases (i) - (iii) described in Section 2.1, uniformly over compact sets in
y ∈ R,

P

{√
T

m
Zn(y) ≤ um(y)

}
= e−2e−y (

1 − 2e−yR(m)
)
,

where

R(m) := τ̆ (um) − k2

16

(log logm)2

logm
(1 + o(1)) , asm → ∞. (22)

Proof The proof is given in Appendix B.

In the next theorem, we get the asymptotic distribution of Dn from the asymptotic
distribution of its “random part” Zn, see Eqs. 11–12.

Theorem 3 Let the assumptions of Proposition 1 be fulfilled, in particular, T = nκ

with κ ∈ (0, 1) and m = nγ with γ ∈ (θ/2, θ). Then in all cases (i) - (iii) described
in Section 2.1, it holds

P

{√
T

m
Dn ≤ um(y)

}
= e−2e−y (

1 − 2e−yR(m)
)
, (23)

provided that

κ + γ

2
< min {1 − κ, 2γ } . (24)

Proof The proof is given in Appendix C. Note that the condition (24) doesn’t con-
tradict our previous assumptions on κ and γ . For instance, it is fulfilled with any
γ ∈ (θ/2, θ) if κ < 1/3, because in this case 1−κ > 2κ > 2θ > 2γ due to Eq. 16
and λ2 may be chosen less than (1/2 − κ).

According to Theorem 1, the function τ̆ (x) = τ
(√

b − a · x
)
is known for some

sets of basis functions. For instance, in case of trigonometric polynomials, k = 0, and

R(m) =
(

(J + 1)h2
2π(b − a)h21

)1/2

· 1√
logm

(1 + o(1)), m → ∞.
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In case of wavelets, τ(um) = O
(
u−2

m

) = O(1/ logm), k = 1, and

R(m) = − 1

16

(log logm)2

logm
(1 + o(1)) , m → ∞.

Therefore, the rates of convergence are typically of logarithmic order. Nevertheless,
at least in the case of trigonometric basis, we can also find a sequence of accompa-
nying laws, which approximate the distribution of Dn with polynomial rate. The next
theorem clarifies this point.

Theorem 4 Consider the case of trigonometric basis. Let the assumptions of
Proposition 1 and (24) be fulfilled. Define the sequence of distribution functions

Am(y) :=

⎧⎪⎨
⎪⎩
exp
{
−2 exp

{
−y − y2

4 log(h1m)

}
− 2m

(
1 − Φ

(
um(y)

√
2h2
))}

,

ify ≥ −b
3/2
m ,

0, ify < −b
3/2
m ,

(25)

where Φ(·) is the cdf of the standard normal distribution. Then there exist some
positive constants c̄, β, such that for sufficiently large n and for any y ∈ R,

sup
y∈R

∣∣∣∣∣P
{√

T

m
Dn ≤ um(y)

}
− Am(y)

∣∣∣∣∣ ≤ c̄ n−β. (26)

Proof Proof is given in Appendix D.

So, Theorem 3 yields that convergence to the Gumbel distribution is quite slow,
and therefore we cannot state that for some realisticm the maximal deviation distribu-
tion is close to its asymptotic distribution. Such situations are typical for similar types
of problems, see, e.g., Hall (1991) and Konakov and Piterbarg (1984). Nevertheless,
from Theorem 4, we get that the distance between maximal deviation distribution
and the distribution function Am(y) converges to zero at polynomial rate.

The results of this section can be used for constructing asymptotic confidence
bands. For instance, from Theorem 4 it follows that

Iα,m :=

⎛
⎜⎜⎝−k

(+)
α,m

2
+

√√√√
(
k
(−)
α,m

)2
4

+ ŝn(x),
k
(+)
α,m

2
+

√√√√
(
k
(+)
α,m

)2
4

+ ŝn(x)

⎞
⎟⎟⎠ ,

is a (1 − α)−confidence band, that is, for m large enough,

P{s(x) ∈ Iα,m, ∀x ∈ D} = 1 − α,

where k
(±)
α,m := √

m/T
(
qα,ma−1

m + bm ± Cαn−βa−1
m

)
, Cα > 0, and qα,m is the (1 −

α)- quantile of the distribution function Am(·), see Section 5 for details.
In the next three sections, we separately consider different choices of basis

functions: trigonometric basis, Legendre polynomials and wavelets.
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4 Proof of Theorem 1

4.1 Stationary case

Let us consider the case of trigonometric basis,

{
ψm

j (x), j = 0..J
}

=
{
χ0(x) = 1√

δ
, χj (x) =

√
2

δ
cos (2jπ(x − a)/δ) ,

χ̃j (x) =
√
2

δ
sin (2jπ(x − a)/δ) , j = 1..(J/2)

}

on the interval [a, a + δ). Changing the variables in (13): x → t = (x − a)/δ, we get

ζ̃ = max
t∈[0,1]

⎧⎨
⎩

Z0√
δ

+
√
2

δ

J/2∑
j=1

[
Zj cos (2πjt) + Z̃j sin (2πjt)

]⎫⎬
⎭ , t ∈ [0, 1],

where all Zj and Z̃j are i.i.d. standard normal r.v.’s.
In the rest of this section, we provide the proof of the Theorem 1 (i). This proof is

based on Theorem 15.2 from Piterbarg (2015), which we formulate below.

Proposition 2 Let X(t), t ∈ [0, T ], be a Gaussian stationary differentiable process
with zero mean. Let the following conditions be fulfilled:

(i) the covariance function r(t) of X(t) has the following asymptotics

r(t) = 1 − 1

2
t2 + αt4 + o(t4), t → 0 (27)

with some α > 0;
(ii) for any t1, t2 ∈ [0, T ], t1 
= t2, the covariance matrix of the vector(

X(t1), X(t2), X
′(t1), X′(t2)

)
is non-degenerate.

Then

P

{
sup

t∈[0,T ]
X(t) ≥ u

}
= T

2π
e−u2/2 + (1 − Φ(u)) + ρ(u), (28)

where 0 ≤ ρ(u) ≤ e−u2(1+χ)/2 for u large enough and some χ > 0.

To find the asymptotics of P
{
ζ̃ ≥ u

}
, we apply Proposition 2 to the process Υ̃ (t)

defined by

Υ̃ (t) := 1√
J + 1

⎧⎨
⎩Z0 + √

2
J/2∑
j=1

[
Zj cos

(
j t/

√
c
)+ Z̃j sin

(
j t/

√
c
)]
⎫⎬
⎭ ,
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where c =
(
2
∑J/2

j=1 j2
)

/ (J + 1). Note that

ζ̃
Law=

√
J + 1

δ
· sup
t∈[0,2π√

c]
Υ̃ (t),

and the process Υ̃ (t) is a centered Gaussian stationary differentiable process with
covariance function r(t) satisfying (27).

Next, we verify the condition (ii) from Proposition 2 for any interval
[0, h√

c], ∀h ∈ (0, 2π). It is equivalent to the assumption that the following
determinant is not equal to zero for any t ∈ (0, h

√
c] :

D :=

∣∣∣∣∣∣∣∣

1 0 〈S(0), S(t)〉 〈S(0), S′(t)
〉

0 1
〈
S′(0), S(t)

〉 〈
S′(0), S′(t)

〉
〈S(0), S(t)〉 〈S(0), S ′(t)

〉
1 0〈

S′(0), S(t)
〉 〈

S′(0), S′(t)
〉
0 1

∣∣∣∣∣∣∣∣
,

where 〈., .〉 is a usual scalar product in R
2N+1, and

S(t) =
√

2

J + 1

(
1√
2
, cos

(
t√
c

)
, sin

(
t√
c

)
, ..., cos

(
Nt√

c

)
, sin

(
Nt√

c

))
,

S(0) = 1√
J + 1

(
1,

√
2, 0, ...,

√
2, 0
)

,

S′(t) =
√

2

(J + 1)c

(
0, − sin

(
t√
c

)
, cos

(
t√
c

)
, ...,

−N sin

(
Nt√

c

)
, N cos

(
Nt√

c

))
,

S′(0) =
√

2

(J + 1)c
(0, 0, 1, 0, 2, ..., 0, N) ,

and N = J/2. This verification can be found in Section 4.3 from Konakov and Panov
(2016). Moreover, one can show (see pp. 14-15 from Konakov and Panov (2016)) that

lim
h→2π

P

{
sup

t∈[0,h√
c]

Υ̃ (t) ≥ u

}
= P

{
sup

t∈[0,2π√
c]

Υ̃ (t) ≥ u

}
.

Since all conditions of Proposition 2 are fulfilled, we get

P

{
ζ̃ ≥ u

}
= P

{√
J + 1

δ
sup

t∈[0,2π√
c]

Υ̃ (t) ≥ u

}

= √
ce−δu2/(2(J+1)) +

(
1 − Φ(u

√
δ/(J + 1))

)
+ ρ(u

√
δ/(J + 1)),

(29)

and the statement of the Theorem 1 (i) follows. Moreover, since

1 − Φ(u) = 1√
2πu

e−u2/2
(
1 − 1

u2
+ o

(
1

u2

))
, u → ∞, (30)
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(see, e.g., Michna (2009)), we conclude that

τ(x) := 1 − Φ(x/
√

J + 1)√
ce−x2/(2(J+1))

=
√

J + 1√
2πg1(J )x

(
1 + O

(
1/x2

))
, x → ∞.

This observation completes the proof.

4.2 Legendre polynomials

In this section, we consider the orthogonal Legendre polynomials Pn(x), −1 ≤ x ≤
1,defined by the formula

Pn(x) = 1

n!2n

[(
x2 − 1

)n](n)

, n = 0, 1, 2, .... (31)

The orthonormal Legendre polynomials P̂n(x) are defined by

P̂n(x) =
√
2n + 1

2
Pn(x), −1 ≤ x ≤ 1. (32)

Recall that we are interested in the asymptotic behaviour of the probability of the

event
{
ζ̆ ≥ u c

√
δ/2
}
as u → +∞, where

ζ̆ = ζ̆ J,m := sup
x∈[−1,1]

Ῠ J,m(x), (33)

and the Gaussian process Ῠ J,m(x) is defined by

Ῠ J,m(x) = Ῠ (x) := c

J∑
j=0

P̂j (x)Zj , x ∈ [−1, 1], (34)

Zj are i.i.d. standard normal random variables, and c is a constant that will be defined
later. Note that here we slightly change the notation introduced in Section 3.

This section is devoted to the proof of Theorem 1 (ii). The main tool of the proof
is Corollary 8.3 from (Piterbarg 1996), which we formulate below as Proposition 3.

Proposition 3 Let Ῠ (x), x ∈ [−1, 1], be a centered Gaussian, a.s. continuous
process with variance σ 2(x) and correlation function ρ(x, y). Let σ 2(x) attain its
global maximum, which is equal to 1, at distinct points x1, ..., xq . Let the following
conditions be fulfilled:

1. for all j = 1..q,

σ(x) = 1 − Aj

∣∣x − xj

∣∣βj (1 + o(1)) , as x → xj , (35)

with some constants Aj > 0, βj > 0;
2. (local homogeneity) for all j = 1..q,

ρ(x, y) = 1 − Cj |x − y|αj (1 + o(1)) , as x → xj , y → xj (36)

with some constants Cj > 0, αj ∈ (0, 2];



384 V. Konakov, V. Panov

3. (Global Hölder condition) there exist some g > 0, G > 0, such that for all
x, y ∈ [−1, 1]

E

[(
Ῠ (x) − Ῠ (y)

)2] ≤ G |x − y|g ; (37)

4. for any j1, j2 = 1..q, j1 
= j2,

ρ(xj1 , xj2) < 1. (38)

Then

P

{
sup

x∈[−1,1]
Ῠ (x) > u

}
=
⎛
⎝∑

j∈Q

Dj

⎞
⎠ ub (1 − Φ (u)) (1 + o(1)) , u → ∞,

(39)

where b = minj=1..q
(
2/βj − 2/αj

)
− , Q :=

{
j = 1..q : (2/βj − 2/αj

)
− = b

}
,

and Dj are the asymptotic coefficients calculated by Theorem 8.2 from Piterbarg
(1996).

Note that Eq. 39 trivially holds with b = 0,
∑

j∈Q Dj = 1 for the process defined
by Eq. 34 if J = 0. Below we check the conditions of Proposition 3 for J ≥ 1.

1. The covariance function r(x, y) of the process Ῠ (x) is equal to

r(x, y) = c2
J∑

j=0

2j + 1

2
Pj (x)Pj (y).

Denote by σ 2(x) the variance of the process Υ (x), that is,

σ 2(x) = r(x, x) = c2
J∑

j=0

2j + 1

2
P 2

j (x). (40)

From the Laplace formula (Suetin 2005, p. 128, (1)), one can show that |Pn(x)| <

1 for |x| < 1, see Section 5.1 from Konakov and Panov (2016) for details.

2. Let us check that Eq. 35 holds with q = 2, x1 = 1 and x2 = −1. First note that

σ 2(1) = σ 2(−1) =: σ 2
max = c2

J∑
j=0

2j + 1

2
= c2

2
(J + 1)2. (41)

Moreover, since σmax = 1, we choose c = √
2/(J + 1). Next, we calculate the

derivative of the standard deviation,

σ ′(x) = c√
2
∑J

j=0 (2j + 1) P 2
j (x)

J∑
j=0

(2j + 1) Pj (x)P ′
j (x).

In the neighbourhood of x = 1 we have an expansion

σ(x) = σ(1) − σ ′(1)(1 − x) + o(1 − x), (42)
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where σ ′(1) = cJ (J + 1)(J + 2)/(4
√
2) = J (J + 2)/4. Analogously, in the

neighborhood of x = −1 we have an expansion

σ(x) = σ(−1) + σ ′(−1)(x + 1) + o(x + 1), (43)

where

σ ′(−1) = −J (J + 2)/4.

From Eqs. 42 and 43, we finally conclude that Eq. 35 holds with β1 = β2 = 1 and
A1 = A2 = J (J + 2)/4.

3. The verification of the condition (36) with α1 = α2 = 1 is made in Section 5.3
from Konakov and Panov (2016).

4. The condition (37) is fulfilled, because

d2(x, y) = c2 · E
⎡
⎢⎣
⎛
⎝ J∑

j=0

√
2j + 1

2

(
Pj (x) − Pj (y)

)
Zj

⎞
⎠

2
⎤
⎥⎦

= c2
J∑

j=0

2j + 1

2

(
Pj (x) − Pj (y)

)2

≤
⎡
⎣c2

J∑
j=0

(2j + 1)j2(j + 1)2

8

⎤
⎦ (x − y)2,

where the last inequality follows from max[−1,1]
∣∣∣P ′

j (x)

∣∣∣ = P ′
j (1) = j (j +1)/2.

The proof of this fact follows from Gradshtein and Ryzhik I. (1996), 8.915 (2),
and can be found in Section 5.1 from Konakov and Panov (2016).

5. Note also the condition (38) is fulfilled because for J ≥ 1

r(−1, 1) = c2
J∑

j=0

2j + 1

2
(−1)j < c2

J∑
j=0

2j + 1

2
= r(1, 1) = 1.

6. Applying Proposition 3, we arrive at Eq. 39 with b = 0, Q = {1, 2}, D1 =
D2 = 1. Taking into account (30), we get

P

{
sup

x∈[−1,1]
Ῠ (x) > u

}
=

√
2√

πu
e−u2/2 (1 + o(1)) , u → ∞.

Finally, we conclude that

P

{
ζ̃ > u

}
= P

{
sup

x∈[−1,1]
Ῠ (x) > uc

√
δ/2

}

= 2

(
√

πc) · (
√

δu)
e−c2δu2/4 (1 + o(1)) , u → ∞.

This observation completes the proof of Theorem 1 (ii).
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4.3 Wavelets

In this section, we consider the case of Haar wavelets, that is,

ψj (x) =
{

1√
δ
,

1√
δ

(
I{x ∈ [a, a + δ/2)} − I{x ∈ [a + δ/2, a + δ]}

)}
,

where δ = 2−l for some l ∈ N. For this set of functions,

ζ̃ = 2l/2 (Z0 + |Z1|.)
Therefore the distribution of 2−l/2ζ̃ has density

pZ0+|Z1|(x) =
∫ x

−∞
2 φ(x − y) φ(y)dy = 1√

π
e−x2/4Φ

(
x/

√
2
)

,

where by φ(·) we denote the density of the standard normal distribution. This density
corresponds to the distribution function

FZ0+|Z1|(x) = Φ2
(
x/

√
2
)

.

Next, we apply a Taylor expansion of the function 1 − �(x) for large x up to the
second order (30), and get that

P

{
ζ̃ ≥ u

}
= 1 − Φ2

(√
δu/

√
2
)

= 2√
π

√
δu

e−δu2/4
(
1 − 2

δu2
+ o

(
1

δu2

))
. (44)

This completes the proof of Theorem 1 (iii).

5 Asymptotic confidence bands

In this section, we show how Theorem 4 can be used for the construction of the
asymptotic confidence bands. In fact, (26) can be rewritten as

P

{
Dn ≤

√
m

T

(
y

am

+ bm

)}
= Am(y) + en(y). (45)

where |en(y)| ≤ c̄ n−β for any y ∈ R, c̄ > 0, β > 0, am and bm are defined in
Eq. 21, and n is sufficiently large. Let us fix some confidence level α ∈ (0, 1) and
denote the (1 − α)- quantiles of the distribution functions Am(·) and Am(·) + en(·)
by qα,m and q̃α,m resp., that is,

Am(qα, m) = Am(q̃α, m) + en(q̃α, m) = 1 − α.

Denote also by qα the (1 − α) - quantile of the distribution function A(y) :=
e−2e−y

. It is easy to see that Am(y) → A(y), qα,m → qα, q̃α,m → qα as m → ∞.
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Returning now to Eq. 45 and recalling the definition of Dn, see Eq. 11, we
conclude that∣∣ŝn(x) − s(x)

∣∣
√

s(x)
≤ k̃α,m :=

√
m

T

(
q̃α,m

am

+ bm

)
, ∀x ∈ D (46)

with probability 1−α. Solving (46) as the quadratic inequality with respect to
√

s(x),
we obtain that

Ĩα,m :=
⎛
⎝− k̃α,m

2
+
√

k̃2α,m

4
+ ŝn(x),

k̃α,m

2
+
√

k̃2α,m

4
+ ŝn(x)

⎞
⎠

is a (1 − α)−confidence band for s(x), that is, P{s(x) ∈ Ĩα,m, ∀x ∈ D} = 1 − α,
provided that m is large enough.

Note that q̃α,m (which is involved in the last formula through k̃α,m) is a theoreti-
cal value, which is not known. To avoid this drawback, we will show that q̃α,m can
be replaced by the quantile qα,m, which can be computed because Am(y) is known
explicitly.

Since the function Am(y) is differentiable with respect to y in all points except
y = −b

3/2
m (see Eq. 25), we get that

en(q̃α,m) = Am(qα,m) − Am(q̃α,m) = A′
m(θ) · (qα,m − q̃α,m

)
,

where θ lies between qα,m and q̃α,m and it is assumed that α is chosen such that

qα > 0 and therefore qα,m, q̃α,m > −b
3/2
m for m large enough.

The derivative of Am(y) is not equal to zero for any y > −b
3/2
m , and therefore

∣∣q̃α,m − qα,m

∣∣ ≤
∣∣en(q̃α,m)

∣∣
infy∈Q

∣∣A′
m(y)

∣∣ ≤ Cαn−β,

where Q is a small vicinity of qα, and Cα is a positive constant do not depending on
m, because A′

m(y) → A′(y) as m → ∞ uniformly in Q. Finally, we conclude that
for m large enough, the band

Iα,m :=

⎛
⎜⎜⎝−k

(+)
α,m

2
+

√√√√
(
k
(−)
α,m

)2
4

+ ŝn(x),
k
(+)
α,m

2
+

√√√√
(
k
(+)
α,m

)2
4

+ ŝn(x)

⎞
⎟⎟⎠ ,

where

k(±)
α,m :=

√
m

T

(
qα,m

am

+ bm ± Cαn−βa−1
m

)
,

covers s(x) with probability larger or equal to 1 − α. Note also that Theorem 3 can
be also used for the construction of confidence band for s(x) in the similar way, but
the width of this band will be asymptotically larger.



388 V. Konakov, V. Panov

6 Discussion

The main contributions of this paper are Theorems 3 and 4, which give the asymptotic
behavior of the maximal deviation distribution for projection estimates. Our research
is motivated by the paper (Figueroa-López 2011), which is to the best of our knowl-
edge the unique publication on this topic. Note that in our research, we provide a
unified treatment for different sets of basis functions (Legendre polynomials of any
order, trigonometric basis, wavelets), whereas the paper (Figueroa-López 2011) is
concentrated on the Legendre polynomials of degree 0 and 1 (piecewise constant and
piecewise linear functions). Moreover, in comparison to Figueroa-López (2011), our
research has a slightly different focus - we show that the rates of convergence of the
maximal deviation distribution to the Gumbel distribution are of logarithmic order,
and therefore the Gumbel approximation is not appropriate in realistic situations
(see Theorems 2 and 3). Finally, we find a sequence of accompanying laws, which
approximates the maximal deviation distribution with polynomial rate, see Theorem
4.

The main ingredient of the proof of Theorems 2-4 is formulated as Theorem 1,
which reveals the essential difference in asymptotic behaviour of Gaussian processes
for different sets of basis functions. An open problem is to prove similar facts for
any basis under some mild conditions. The existing theory for Gaussian processes
doesn’t have a unified remedy for solving such problems, and therefore this issue can
be a topic for further research.

Appendix

A Proof of Proposition 1

1. Preliminary remarks. For a function G(·) and positive constant h, introduce the
notation

L (h, G, d; x) := h

d∑
r=1

[∫
D

ϕr(u) dG(u)

]
ϕr(x).

Note that

ŝn(x) − Eŝn(x) = L
(√

n/T ,Zn(FΔ(·)), d; x
)

=: L1(x),

where Zn(·) is the empirical process of a uniform on [0, 1] random sample
F�(X

(k)
� ), k = 1..n, i.e.,

Zn(x) := √
n

(
1

n

n∑
k=1

I

{
FΔ

(
X

(k)
Δ

)
≤ x
}

− P

{
FΔ

(
X

(k)
Δ

)
≤ x
})

,
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and Ft(·) is the distribution function of Xt . In our notations, Zn(F�(·)) is the
empirical process for X

(k)
Δ , k = 1..n,

Zn(FΔ(x)) = √
n

(
1

n

n∑
k=1

I

{
X

(k)
Δ ≤ x

}
− FΔ(x)

)
.

2. Komlós-Major-Tusnady construction. Applying Theorem 3 in Komlós et al.
(1975), we get that there exists a version of Zn(x) (denoted below also as Zn(x)

for sake of simplicity) and a sequence of Brownian bridges Bn(x) such that for
any y > 0 the probability of the event

Wn(y) :=
{

sup
x∈[0,1]

|Zn(x) − Bn(x)| ≤ C1
log(n)√

n
+ y

}

is larger than 1 − Ke−λy
√

n, where Bn(x) = Wn(x) − xWn(1) with Brownian
motions Wn(x), and C1, K, λ are some positive absolute constants. As usual, we
take y = y∗ = log(n)/

√
n, and get that the event W∗

n = Wn(y
∗) defined by

W∗
n :=

{
sup

x∈[0,1]
|Zn(x) − Bn(x)| ≤ (C1 + 1)

log(n)√
n

}
(47)

is of probability larger than 1 − K/nλ. Note that if this statement is fulfilled for
λ = λ1, then it also holds with any 0 < λ < λ1.

3. L1(x) � L2(x) := L
(√

n/T , Bn(F�(·)), d; x
)
. By the definition of the

functional L ,

L1(x) − L2(x) = L
(√

n/T ,Zn(F�(·)) − Bn(F�(·)), d; x
)

(48)

It is worth mentioning that for a function G,

sup
x∈D

∣∣∣L
(
h, G, d; x

)∣∣∣ ≤ C2 h m w(G, D, δ), (49)

where C2 is a positive constant depending on (ϕr), and w is the modulus of
continuity, i.e.,

w(G, D, δ) := sup
{
|G(u) − G(v)| : u, v ∈ D, |u − v| < δ

}
.
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In fact, we get for x ∈ Ip = [a + δ(p − 1), a + δp),

∣∣∣L
(
h, G, d; x

)∣∣∣ =
∣∣∣∣∣∣h

J∑
j=0

[∫ a+δ

a

ψm
j (u) dG

(
u + δ̄

)]
ψm

j (x − δ̄)

∣∣∣∣∣∣

=
∣∣∣∣∣∣h

J∑
j=0

[
ψm

j (a + δ)
(
G(a + δ̄ + δ) − G(a + δ̄)

)

−
∫ a+δ

a

(
G(u + δ̄) − G(a + δ̄)

)
dψm

j (u)
]
ψm

j (x − δ̄)

∣∣∣∣

≤ h

J∑
j=0

(
sup
x∈I1

|ψm
j (x)| + V a+δ

a

(
ψm

j

))
sup
x∈I1

∣∣∣ψm
j (x)

∣∣∣ · w(G, D, δ)

≤ C2 h m w(G, D, δ),

where δ̄ := δ(p − 1), C2 > 0, and the conditions (6) are used. Combining (47), (48)
and (49) we get that on the event W∗

n ,

sup
x∈D

|L1(x) − L2(x)| ≤ C3
m log(n)

T
, where C3 > 0.

4. L2(x) � L3(x) := L
(√

n/T , Bn(1 − F�(·)), d; x
)
. Taking into account that

Bn(x)
Law= Bn(1 − x) in C([0, 1]), we get

L2(x) = L
(√

n/T , Bn(F�(·)), d; x
)

Law= L
(√

n/T , Bn(1 − F�(·)), d; x
)

= L3(x).

5. L3(x) � L4(x) := L
(√

n/T ,Wn(1 − F�(·)), d; x
)
. Obviously,

L4(x) − L3(x) = L
(√

n/T , (1 − F�(·)) Wn(1), d; x
)
.

Similarly to Step 3, we get with some C4, C5 > 0

sup
x∈D

|L4(x) − L3(x)| ≤ C2

√
nm

T
w
(
1 − FΔ(·), D, δ

)
|Wn(1)|

≤
√

nm

T

(
C4Δ

2 + C5δΔ
)

|Wn(1)|
≤ m√

n

(
C4Δ + C5δ

)
|Wn(1)| ,

where the second inequality holds due to Eq. 10: for any u < v, u, v ∈ D,

|P {XΔ ≥ u} − P {XΔ ≥ v}| < qΔ2 + ν ([u, v]) Δ

≤ qΔ2 + max
x∈[u,v] |s(x)| · |v − u|Δ. (50)
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6. L4(x) � L5(x) := L
(
1/

√
T , Wn ((1 − FΔ(·)) /Δ) , d; x

)
.

Applying the self-similarity property of the Brownian motion, we get

L
(√

n/T ,Wn(1 − F�(·)), d; x
)

Law= L
(
1/

√
T , Wn ((1 − F�(·)) /�) , d; x

)
.

7. L5(x) � L6(x) := L
(
1/

√
T , Wn

(∫ +∞
· s(u)du

)
, d; x

)
.

Using (49) and the assumption (10), we get

sup
x∈D

|L5(x) − L6(x)| ≤ C2
m√
T

w

(
Wn

(
(1 − F�(·)) /Δ

)
− Wn

(∫ +∞

·
s(u)du

)
,D, δ

)

≤ C6
m√
T

w(Wn,D, qΔ), with C6 > 0.

In the paper (Fisher and Nappo 2010), it is proven that

E [w(Wn, D, q�)] ≤ C7

√
� log

(
1

�

)
, with C7 > 0,

and therefore due to Chebyshev inequality, it holds with any ε > 0,

P

{
sup
x∈D

|L5(x) − L6(x)| > ε

}
≤ P

{
w(Wn, D, q�) > ε

√
T

C6m

}

≤ C6C7
m

ε
√

T

√
� log

(
1

�

)
.

8. L6(x) � L7(x) := L
(
1/

√
T ,
∫ +∞
·

√
s(u)dWn(u), d; x

)
.

The functionals L6(x) and L7(x) have the same distributions, because

Wn

(∫ +∞

·
s(u)du

)
Law=

∫ +∞

·

√
s(u)dWn(u)

in C([a, b]). Recall that

L
(
1/

√
T ,

∫ +∞

·

√
s(u)dWn(u), d; x

)
= − 1√

T

d∑
r=1

[∫
D

ϕr(u)
√

s(u) dWn(u)

]
ϕr(x)

= −
√

s(x)

T

d∑
r=1

[∫
D

ϕr(u)

√
s(u)

s(x)
dWn(u)

]
ϕr(x).

9. L7(x) � L8(x) := L
(−√

s(x)/T ,Wn(·), d; x
)
. Let us show that

sup
x∈D

|L8(x) − L7(x)| ≤ C8T
−1/2 sup

x∈D

|Wn(x)| , with C8 > 0. (51)
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In fact, we can represent the difference in Eq. 51 as

L7(x) − L8(x) =
√

s(x)

T

m∑
p=1

J∑
j=0

Gj,p(x)ϕj,p(x),

where ϕj,p(x) = ψm
j (x − δ(p − 1)) I

{
x ∈ Ip

}
, j = 0..J, p = 1..m, and

Gj,p(x) :=
∫

Ip

ϕj,p(u)dWn(u) −
∫

Ip

ϕj,p(u)

√
s(u)

s(x)
dWn(u).

Using integration by parts for continuous functions of bounded variation (see Kuo
2006, formula (2.3.1)), we get

Gj,p(x) = ϕj,p(a + δp)

(
1 −

√
s(a + δp)

s(x)

)
Wn(a + δp)

−ϕj,p(a + δ(p − 1))

(
1 −

√
s(a + δ(p − 1))

s(x)

)
Wn(a + δ(p − 1))

−
∫

Ip

Wn(u) d

(
ϕj,p(u)

(
1 −

√
s(u)

s(x)

))

≤ C9V{Ip}
(
ϕj,p(·)

(
1 −√s(·)/s(x)

))
· sup

Ip

|Wn(u)| ,

where C9 > 0 and V{Ip}(g) is the total variation of a function g(·). Note that for any
u1, u2, x ∈ Ip

∣∣∣∣∣ϕj,p(u2)

(
1 −

√
s(u2)

s(x)

)
− ϕj,p(u1)

(
1 −

√
s(u1)

s(x)

)∣∣∣∣∣
≤ ∣∣ϕj,p(u2)

∣∣
∣∣√s(u2) − √

s(u1)
∣∣

√
s(x)

+ ∣∣ϕj,p(u2) − ϕj,p(u1)
∣∣
∣∣√s(x) − √

s(u1)
∣∣

√
s(x)

,

where∣∣∣√s(u2) −√s(u1)

∣∣∣ = |s(u2) − s(u1)|√
s(u2) + √

s(u1)
≤ C10 |u2 − u1| , with C10 > 0,

because the function s(·) is assumed to be Lipschitz. Taking into account (6), we
conclude that

V{Ip}
(
ϕj,p(·)

(
1 −√s(·)/s(x)

))
≤ C11

(
sup
x∈Ip

∣∣ϕj,p(x)
∣∣+ V{Ip}

(
ϕj,p

)) |Ip| ≤ C12√
m

with some C11, C12 > 0. Therefore

sup
Ip

|Gj,p(x)| ≤ C9C12√
m

sup
D

|Wn(u)|, with C9 > 0,
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and Eq. 51 follows. Note that

P

{
sup
x∈D

|Wn(x)| > u

}
≤ P

{
sup
x∈D

Wn(x) > u

}
+ P

{
inf
x∈D

Wn(x) < −u

}

≤ 2P

{
sup

x∈[0,b]
Wn(x) > u

}
= 4P {Wn(b) > u} ,

see p. 105 from Revuz and Yor (1999).

10. supx∈D L8(x) � maximum of random variables. The function L8(x) is equal
to

L8(x) = −
√

s(x)

T

m∑
p=1

J∑
j=0

Zj,pψm
j (x − δ(p − 1)) · I {x ∈ Ip

}
,

where the r.v’s Zj,p := ∫
Ip

ψm
j (u − δ(p − 1))dWn(u) have standard normal

distribution. Therefore,

√
T · sup

x∈D

{ |L8(x)|√
s(x)

}
= max

p=1..m

⎡
⎣sup

x∈I1

∣∣∣∣∣∣
J∑

j=0

Zj,pψm
j (x)

∣∣∣∣∣∣

⎤
⎦ = max {ζ1, ..., ζm} ,

(52)

where ζ1, ..ζm are independent copies of the random variable

ζ = ζ J,m = sup
x∈I1

∣∣∣∣∣∣
J∑

j=0

Zjψ
m
j (x)

∣∣∣∣∣∣
with i.i.d. standard normal r.v.’s Zj , j = 0..J .

11. Last step. To complete the proof, we need the following technical lemma.

Lemma A1 Let η1, ..., ηk be random variables such that

P

{
|ηi+1 − ηi | ≤ δi

}
≥ 1 − γi, i = 1..(k − 1),

for some non-negative δi, γi, i = 1..k. Denote by Fηk
the distribution function of ηk .

Then it holds

Fη1

⎛
⎝x −

k−1∑
j=1

δj

⎞
⎠−

k−1∑
j=1

γj ≤ Fηk
(x) ≤ Fη1

⎛
⎝x +

k−1∑
j=1

δj

⎞
⎠+

k−1∑
j=1

γj . (53)

Proof The proof is given in the preprint (Konakov and Panov 2016), where this
statement is formulated as Lemma A.1.
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Returning to the proof of Proposition 1, we apply Lemma A1 with

ηk :=
√

T

m
sup
x∈D

{ |Lk(x)|√
s(x)

}
, k = 1..7,

η8 := 1√
m

max
p=1..m

ζp =
√

T

m
sup
x∈D

{ |L8(x)|√
s(x)

}
,

where the last equality follows from Eq. 52. Note that for all k = 2, .., 8,

|ηk − ηk−1| ≤
√

T

m
sup
x∈D

∣∣∣∣ |Lk(x)| − |Lk−1(x)|√
s(x)

∣∣∣∣
≤
√

T

m
sup
x∈D

{
1√
s(x)

}
· sup
x∈D

∣∣∣Lk(x) − Lk−1(x)

∣∣∣.

Using the results obtaining on the previous steps of the proof (and changing for
simplicity the indexes for constants), we get

δ1 = C3

√
m log n√

T
, γ1 = K/nλ,

δ3 =
√

T

m

(
C4

T m

n3/2
+ C5(b − a)

1√
n

)
q(1)
n , γ3 = 2(1 − Φ(q(1)

n )),

δ5 =
√

T

m
ε, γ5 = C6C7

m

ε

√
1

n
log
( n

T

)
,

δ7 = C8
1√
m

q(2)
n , γ7 = 4(1 − Φ(q(2)

n /
√

b)),

where the sequences q
(1)
n , q

(2)
n are tending to ∞ as n → ∞, and all other δ’s and γ ’s

are equal to 0.
Let us fix ε, q

(1)
n , q

(2)
n such that

∑7
i=1 γi � n−λ as n → ∞. More precisely, we

take ε = C6C7K
−1mnλ−1/2

√
log(n/T ), and motivated by the inequality

1 − Φ(x) ≤ 1

x
√
2π

e−x2/2, ∀ x > 0, (54)

see, e.g., p.2 in Michna (2009), we choose q
(1)
n = √2λ log n, and q

(2)
n = √2λb log n.

Next, we set T = nκ . Note that the condition κ < 1 guarantees that Δ = T/n → 0
as n → ∞.

We take now λ < (1 − κ)/2 (see step 2), and fix

θ = min {κ, (1 − κ) − 2λ} > 0.
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Assuming that m � nθ/2, we conclude that

δ7 = c̄1

√
log n√
m

�
√

m
√
log n

nθ/2
=: �n,m,

δ1 = c̄2

√
m log n

nκ/2
� �n,m, since κ/2 > θ/2,

δ5 = c̄3

√
m ·√log n

n1/2−λ−κ/2
� �n,m, since 1/2 − λ − κ/2 > θ/2,

δ3 = c̄4

√
m ·√log n

n3/2(1−κ)
+ c̄5

√
log n√

m · n(1−κ)/2
� �n,m,

since 3/2(1 − κ) > (1 − κ)/2 − λ > θ/2 and
√
log n/(mn1−κ) � δ7 � �n,m.

with c̄k > 0, k = 1..5. Therefore,
∑7

i=1 δi � δ7 as n → ∞. Applying Lemma A1,
we arrive at

P

{√
T

m
Zn ≤ x − c̃1�n,m

}
− c̃2n

−λ ≤ P

{
1√
m

max
p=1..m

ζp ≤ x

}

P

{√
T

m
Zn ≤ x + c̃1�n,m

}
+ c̃2n

−λ ≥ P

{
1√
m

max
p=1..m

ζp ≤ x

}

with c̃1, c̃2 > 0. Note that if m = nγ with γ ∈ (θ/2, θ) then �n,m � n−λ1 with some
λ1 > 0. We arrive at the required result (14)–(15) with λ2 := λ.

B Proof of Theorem 2

From Eq. 14 we get that for any u,

P

{√
T

m
Zn ≤ u

}
≤
[
F̆
(√

m
(
u + c1n

−λ1
))]m + c2n

−λ2, (55)

where F̆ (·) is the distribution function of the random variable ζ J,m. Substituting
u = um − c1n

−λ1 , we get in the right-hand side of Eq. 55[
F̆
(√

mum

)]m = em·log(1−(1−F̆ (
√

mum)) = eWmHm, m → ∞,

where Wm := −m · P {ζ J,m ≥ √
mum

}
, and Hm := exp{−(W 2

m/(2m))(1 +
o(1))}, m → ∞. Formula (19) yields

Wm = −2
h1 m

uk
m

exp
{
−h2u

2
m

}
(1 + τ̆ (um)) .

Since am → ∞, bm/cm → ∞ as m → ∞, we get

Wm = −2
h1 m

bk
m

exp

{
−h2 ·

(
2y

bm

am

+ b2m − 2cm

)}
(1 + R(m)) ,
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because

(
1 + y

ambm

− cm

b2m

)−k

exp

{
−h2

(
y2

a2m
− 2y

cm

ambm

+ c2m

b2m

)}

=
[
1 + k2

2h2

log bm

b2m
(1 + o(1))

]
·
[
1 − k2

4h2

(
log bm

bm

)2

(1 + o(1))
]

= 1 − k2

16

(log logm)2

logm
(1 + o(1)) .

Therefore, we get the asympotics for Wm:

Wm = −2 exp

{
−2h2y

bm

am

}
· h1 m

exp
{
h2b2m

} · exp {2h2cm}
bk
m

(1 + R(m))

= −2e−y(1 + R(m)). (56)

Note also that Eq. 56 yields Hm = 1 + l(y)m−1(1 + o(1)), m → ∞ with l(y) =
−2e−2y . Finally, we get that the following inequality is fulfilled uniformly over a
compact subset in y ∈ R,

P

{√
T

m
Zn ≤ um(y) − c1n

−λ1

}
≤ e−2e−y (

1 − 2e−yR(m)
)
. (57)

Note that we do not distinguish R(m) and R(m)(1 + o(1)), m → ∞, and therefore
the equalities like R(m) = R(m) + cn−λ are possible. Due to our choice of the
sequence um(y), we get

um

(
y
)− c1n

−λ1 = um

(
y − 2c1h2 · n−λ1bm

)
, (58)

where n−λ1bm � R(m) as n,m → ∞. Since (57) is fulfilled uniformly over the
compact sets, we can apply this inequality with y − 2c1h2 · n−λ1bm instead of y.
Finally, we arrive at

P

{√
T

m
Zn ≤ um(y)

}
≤ e−2e−y (

1 − 2e−yR(m)
)
. (59)

Analogously to Eqs. 57 and 59, we derive from Eq. 15 that

P

{√
T

m
Zn ≤ um(y) + c1n

−λ1

}
≥ e−2e−y (

1 − 2e−yR(m)
)
, (60)

and

P

{√
T

m
Zn ≤ um(y)

}
≥ e−2e−y (

1 − 2e−yR(m)
)
. (61)

Joint consideration of Eqs. 59 and 61 completes the proof.



Convergence rates for Lévy density estimation 397

C Proof of Theorem 3

First note that for any x ∈ R∣∣ŝn(x) − s(x)
∣∣ ≤ ∣∣ŝn(x) − Eŝn(x)

∣∣+ ∣∣Eŝn(x) − s̃(x)
∣∣+ |s̃(x) − s(x)| . (62)

Below we separately consider the second and the third terms in the right-hand side
of Eq. 62, see steps 1 and 2 below. Afterwards, we combine our results and arrive at
Eq. 23, see step 3.

1. Consider the difference

Eŝn(x) − s̃(x) =
d∑

r=1

[
1

Δ
E (ϕr(XΔ)) −

∫ b

a

ϕr(u)s(u)du

]
ϕr(x)

=
m∑

p=1

J∑
j=0

[
1

Δ
E
(
ϕj,p(XΔ)

)−
∫

Ip

ϕj,p(u)s(u)du

]
ϕj,p(x),

where ϕj,p(x) = ψm
j (x − δ(p − 1)) I

{
x ∈ Ip

}
, j = 0..J, p = 1..m.

Note that since ϕj,p(·) is a function of bounded variation on the compact interval Ip,

E
[
ϕj,p(XΔ)

] = ϕj,p(c) P {XΔ ≥ c} +
∫

Ip

P {XΔ ≥ u} d
(
ϕj,p(u)

)
,

∫
Ip

ϕj,p(u)s(u)du = ϕj,p(c) ν ([c, ∞)) +
∫

Ip

ν ([u,∞)) d
(
ϕj,p(u)

)
,

where c = a + δ(p − 1). Therefore∣∣∣∣∣
1

Δ
E
[
ϕj,p(XΔ)

]−
∫

Ip

ϕj,p(u)s(u)du

∣∣∣∣∣ ≤
(∣∣∣ψm

j (a)

∣∣∣+ V{I1}
(
ψm

j

))
MΔ(Ip),

where

M�(Ip) := sup
y∈Ip

∣∣∣∣ 1ΔP {X� > y} − ν ([y,+∞))

∣∣∣∣ .
Applying the small-time asymptotic property (10), we conclude that MΔ(Ip) ≤
MΔ([a, b]) ≤ qΔ, and therefore

sup
x∈D

∣∣Eŝn(x) − s̃(x)
∣∣ ≤ qnκ−1 ·

J∑
j=0

(
|ψm

j (a)| + V{I1}
(
ψm

j

))
sup
x∈I1

∣∣∣ψm
j (x)

∣∣∣ .

Next, using the conditions (6), we arrive at

sup
x∈D

∣∣Eŝn(x) − s̃(x)
∣∣ ≤ c1n

κ−1m, with c1 > 0. (63)

2. Next, we consider the difference

s̃(x) − s(x) =
m∑

p=1

J∑
j=0

[∫
Ip

ϕj,p(y)s(y)dy · ϕj,p(x)

]
− s(x).
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Since in all considered cases ϕ0,p(x)dx = 1/
√

δ · I {x ∈ Ip

}
, p = 1..m, we get

1 =
m∑

p=1

∫
Ip

ϕ0,p(y)dy · ϕ0,p(x), ∀ x ∈ [a, b],

and moreover
∫
Ip

ϕj,p(y)dy = 0 for all j = 1..J, p = 1..m. Therefore,

s̃(x) − s(x) =
m∑

p=1

J∑
j=0

[∫
Ip

ϕj,p(y) (s(y) − s(x)) dy · ϕj,p(x)

]
.

Applying the Cauchy-Schwarz inequality for the second summation, we get

|s̃(x) − s(x)| ≤
m∑

p=1

⎛
⎝ J∑

j=0

(∫
Ip

ϕj,p(y) (s(y) − s(x)) dy

)2
⎞
⎠

1/2

·
⎛
⎝ J∑

j=0

ϕ2
j,p(x)

⎞
⎠

1/2

. (64)

Next, we apply the Cauchy-Schwarz inequality for the integral in Eq. 64:

|s̃(x) − s(x)| ≤
m∑

p=1

⎛
⎝
∫

Ip

(s(y) − s(x))2 dy ·
J∑

j=0

∫
Ip

ϕ2
j,p(y)dy

⎞
⎠

1/2

·
⎛
⎝ J∑

j=0

ϕ2
j,p(x)

⎞
⎠

1/2

. (65)

Note that
∫
Ip

ϕ2
j,p(y)dy = 1, ∀ j, p, and

∑J
j=0 ϕ2

j,p(x) ≤ C21(J + 1)δ−1 · I{x ∈ Ip}
due to the assumption (6). Furthermore, since the function s(·) is Lipschitz,∫

Ip

(s(y) − s(x))2 dy ≤ H 2δ3, ∀ x ∈ Ip,

where H is a Lipschitz constant. Finally we conclude that

|s̃(x) − s(x)| ≤ c2δ = c2(b − a)m−1, with c2 > 0.

3. Using the upper bounds for the second and the third term in Eq. 62, we get√
T

m
Dn ≤

√
T

m
Zn + c̆

√
T

m
max

{
nκ−1m,m−1

}
=
√

T

m
Zn + c̆ Gn,m,

where c̆ = max{c1, c2(b−a)} and Gn,m := nκ/2m1/2 max
{
nκ−1, m−2

}
. On the

other side, similar to Eq. 62, we obtain∣∣ŝn(x) − s(x)
∣∣ ≥ ∣∣ŝn(x) − Eŝn(x)

∣∣− ∣∣Eŝn(x) − s̃(x)
∣∣− |s̃(x) − s(x)| ,

and therefore√
T

m
Dn ≥

√
T

m
Zn − c̆

√
T

m
max

{
nκ−1m,m−1

}
=
√

T

m
Zn − c̆ Gn,m.

So, we have proved that

P

{∣∣∣∣∣
√

T

m
Dn −

√
T

m
Zn

∣∣∣∣∣ ≤ c̆ Gn,m

}
= 1.
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By Lemma A1, for any x ∈ R,

P

{√
T

m
Zn ≤ x − c̆ Gn,m

}
≤ P

{√
T

m
Dn ≤ x

}
≤ P

{√
T

m
Zn ≤ x + c̆ Gn,m

}
. (66)

Substituting x = um with um = um(y) = y/am + (bm − cm/bm) (see Eq. 20), we
get that the left-hand side in Eq. 66 is equal to

P

{√
T

m
Zn ≤ um

(
y
)− c̆ Gn,m

}
= P

{√
T

m
Zn ≤ um

(
y − c̆ Gn,mam

)}

= e−2e−y (
1 − 2e−yR(m)

)
,

where we use the fact that according to Eq. 24

Gn,mam = 2
√

h2n
(κ+γ )/2−min{1−κ,2γ }√log (h1m) � R(m), n, m → ∞ (67)

The same argument holds for the right-hand side of Eq. 66, and the desired result
follows.

D Proof of Theorem 4

The main idea of the proof is to show that the “random part” of Dn satisfies

sup
y∈R

∣∣∣∣∣P
{√

T

m
Zn ≤ um(y)

}
− Am(y)

∣∣∣∣∣ ≤ C0n
−β0 , (68)

with C0 > 0, β0 > 0 (see steps 1 and 2) and afterwards to study the entire deviation
Dn (step 3).

1. From the proof of Theorem 2 (see Appendix B), we know that

P

{√
T

m
Zn ≤ um(y) − c1n

−λ1

}
≤ eWm

(
1 + l(y)

m
(1 +o(1))

)
+ c2n

−λ2,(69)

where l(y) = −2e−2y and

Wm = −mP

{
ζ J,m ≥ √

mum

}
, um(y) = bm + y

2h2bm

.

Using (29) and notations of Corollary 1, we get

Wm = −2h1m exp
{
−h2u

2
m

}
− 2m

(
1 − Φ

(
um

√
2h2
))

+ R,

where
|R| ≤ m · exp

{
−(1 + χ)h2u

2
m

}
. (70)

By the definition of um,

h1m exp
{
−h2u

2
m

}
= exp

{
−y − y2

4 log(h1m)

}
. (71)
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Note that for y ≥ −b
3/2
m , for any ε > 0 and sufficiently large m

um = bm + y

2h2bm

≥ bm − 1

2h2

√
bm ≥ (1 − ε)bm. (72)

It follows from Eq. 70 that for sufficiently small ε > 0 and sufficiently large m,

|R| ≤ m exp
{
−(1 + χ)h2 (1 − ε)2 b2m

}

= m exp
{
−(1 + χ) (1 − ε)2 log(h1m)

}
≤ C1m

−β1 , C1 > 0, β1 > 0.

Therefore, eR = 1 + Θm, where Θm � m−β1 . Finally, we get from Eq. 69 for any
y ≥ −b

3/2
m

P

{√
T

m
Zn ≤ um − c1n

−λ1

}
− Am(y)

≤ Am(y)Θm + Am(y) (1 + Θm)
l(y)

m
(1 + o(1)) ≤ C2m

−β2 , m → ∞

with C2 > 0, β2 > 0, l(y) 
 e−2y. Substituting y + c1n
−λ1 instead of y, and taking

into account that m = nγ , we get for n large enough

P

{√
T

m
Zn ≤ um

}
− Am(y) ≤ C3n

−β3 with C3 > 0, β3 > 0,

because Am

(
y + c1n

−λ1
) = Am(y) + C4n

−β4(1 + o(1)) with some C4, β4 > 0.
Analogously, from the inequality

P

{√
T

m
Zn ≤ um + c1n

−λ1

}
≥ eWm

(
1 + l(y)

m
(1 + o(1))

)
− c2n

−λ2 ,

one can derive that

P

{√
T

m
Zn ≤ um

}
− Am(y) ≥ −C3n

−β3

holds for any n large enough.
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2. For y < −b
3/2
m , we obtain

Wm = −mP

{
ζ J,m ≥ √

m

(
bm + y

2h2bm

)}

≤ −mP

{
ζ J,m >

√
m

(
bm − 1

2h2

√
bm

)}

= −2h1m exp

{
−h2b

2
m + b

3/2
m − bm

4h2

}
(1 + o(1))

= −2 exp
{
b
3/2
m

}
(1 + o(1))

= −2 exp

{
(log(h1m))3/4

h
3/4
2

}
(1 + o(1)).

Therefore, similarly to the first step of the proof, we get with for all y < −b
3/2
m

P

{√
T

m
Zn ≤ um − c1n

−λ1

}
≤ eWm

(
1 + l(y)

m
(1 + o(1))

)
+ c2n

−λ2 ≤ C5n
−β5 ,

P

{√
T

m
Zn ≤ um + c1n

−λ1

}
≥ eWm

(
1 + l(y)

m
(1 + o(1))

)
− c2n

−λ2 ≥ −C5n
−β5 ,

with some C5, β5 > 0, because

eWm ≤ e−e
(logm)3/4h

−3/4
2 ≤ e−K logm = m−K

for any K > 0 and m large enough. Finally, we conclude that

sup
y<−b

3/2
m

∣∣∣∣∣P
{√

T

m
Zn ≤ um(y)

}
− Am(y)

∣∣∣∣∣ ≤ C6n
−β6 ,

with some C6, β6 > 0.

3. It follows from (66) that

P

{√
T

m
Dn ≤ um(y)

}
≤ P

{√
T

m
Zn ≤ um(y + c̆ Gn,mam)

}
,

P

{√
T

m
Dn ≤ um(y)

}
≥ P

{√
T

m
Zn ≤ um(y − c̆ Gn,mam)

}
,
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where Gn,mam � n−β7 (see (67)) with β7 > 0. Applying (73) to the right-hand
sides of these inequalities, we get

P

{√
T

m
Dn ≤ um(y)

}
≤ Am(y + c̆ Gn,mam) + C0n

−β0 ≤ Am(y) + c̄n−β,

P

{√
T

m
Dn ≤ um(y)

}
≥ Am(y − c̆ Gn,mam) − C0n

−β0 ≥ Am(y) − c̄n−β,

where c̄ > 0, β > 0. This observation completes the proof of Theorem 4.
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